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On the finite-dimensional PUA representations of the 
Shubnikov space groups 

P M van den Broek 
Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, Nijmegen, The 
Netherlands 

Received 9 June 1977 

Abstract. The finite-dimensional PUA representations of the Shubnikov space groups are 
discussed using the method of generalised induction given by Shaw and Lever. In particular 
we derive expressions for the calculation of the little groups. 

1. Introduction 

The relevance of the projective unitary-anti-unitary (PUA) representations of 
symmetry groups of physical systems is by now well known. If one considers Electrons 
in a crystalline potential with an external electromagnetic field the occurring symmetry 
groups are Shubnikov space groups. Examples for these external electromagnetic fields 
occurring in the literature are a uniform magnetic field (Brown 1964, Zak 1964a, b, 
Overhof and Rossler 1968, Opechowski and Tam 1969, Tam 1969) and a uniform 
magnetic field together with a uniform electric field (Ashby and Miller 1965, Tam 
1970). These authors however do not consider PUA representations of Shubnikov 
space groups (except Brown, who derived the PU representations of the group of 
translations which obey periodic boundary conditions); they construct invariance 
operator groups for the Hamiltonian operator. The PUA representations of the 
Shubnikov space groups correspond to a special class of UA representations of these 
invariance operator groups. The derivation of these UA representations of the 
invariance operator groups however is more complicated than the derivation of the PUA 
representations of the Shubnikov space groups and has been given only for a special 
class of invariance operator groups (Overhof and Rossler 1968, Opechowski and Tam 
1969). 

This paper will be devoted to the study of the finite-dimensional irreducible PUA 
representations of the Shubnikov space groups. Although infinite-dimensional 
irreducible PUA representations exist we note that if we apply periodic boundary 
conditions, as is usually done, the groups become finite, and therefore the irreducible 
PUA representations are finite-dimensional. However, we will not impose periodic 
boundary conditions, but consider only finite-dimensional PUA representations. Our 
main tool will be the method of generalised induction, given by Shaw and Lever (1974). 
In § 3 we will describe this method briefly, making use of the decomposition of factor 
systems given in a previous paper (van den Broek 1976). 
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2. Preliminaries 

Let G be a group and Go a subgroup of G of index 1 or 2. A PUA representation of G 
with respect to Go is a mapping D from G into the operators on some Hilbert space 2 
such that: 

(i) D(g) is unitary if g E Go and anti-unitary if g& Go; 
(ii) D(g)D(g’) = c+(g, g’)D(gg’) for all g, g’E G for some mapping U: G X G + U(1); 
(iii) D(e)  = I, where e is the identity of G and I is the identity operator on X. 
The mapping U is called a factor system of G with respect to Go and satisfies 

d g ,  e )  = d e ,  g) = 1 VgEG (2.1) 

4 5  g’)dgg’, g”)= d g ,  g’”’)(+g(gr? g”) (2.2) 
and 

where A g  is defined by 

vg, g’, g ” E  G 

if gE Go 
if g& Go (2.3) 

and the asterisk denotes complex conjugation. 

the appropriate subgroup of index 1 or 2 is. 
In the sequel we will drop the phrase ‘with respect t o .  . .’ wherever it is clear which 

A factor system U of G is called trivial if it can be written as 

d g ,  g’) = c(g)cYg’)c-’(gg’) vg, g’ E G (2.4) 
for some mapping c: G+ U(1). 

Two factor systems w and U’ are called equivalent if U@’-’ is trivial. 
From now on we suppose that the Hilbert space X is finite-dimensional. 
Let {e l , .  . . , e,,} be an orthonormal basis of X. For each operator D(g) a unitary 

n X n matrix 9 ( g )  is defined by gij(g) = (ei, D(g)ej) .  The matrices 9 ( g )  form a PUA 
matrix representation or PUAM representation of G :  

A PUA representation D of G is reducible if there is a proper subspace Z’ of X which 
is invariant under D(G);  otherwise D is irreducible. Two PUA representations D1 and 
Dz of G are equivalent if there exists a unitary matrix S such that 

%(g) = S-’ga,(g)sg. (2.7) 
In the sequel we shall identify equivalent PUA representations, and also identify a PUA 

representation with the corresponding PUAM representation. 
To conclude this preliminary section let us remark that we only need to consider 

factor systems of finite order to obtain the finite-dimensional PUA representations of a 
group. To see this, take the determinant of both sides of equation (2.5) 

[det B(g)l[det 9(g’)lB = d ( g ,  g‘)[det %#’)I 
if Ed is n-dimensional; this means that wn(g, g’) is a trivial factor system. 
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3. Generalised induction 

In this section we will describe briefly the procedure of generalised induction given by 
Shaw and Lever (1974), with the help of the decomposition of factor systems given by 
the author (van den Broek 1976). Let G be a group, Go a subgroup of G of index 1 or 2 
and H an invariant subgroup of G of finite index. Let K be the quotient group G/H. 
The elements of K are the cosets of G with respect to H. Elements of H will be denoted 
by a, b, c, . . . and elements of K by a, p, y, . . . I 

In the case where H g  G we suppose that the coset representatives are chosen to lie 
within Go. Then each element of G can uniquely be written as (a, a) if we define 

(a ,  a) = ar(a). (3.1) 

a" = r(a)ar-'(a) (3.2) 

r ( a ) r ( P )  = m ( a ,  P ) r ( @ )  (3.3) 

Let U" be defined by 

and the mapping m : K X K + HO by 

where Ho = H n Go. 
The multiplication in G is now given by 

(a, a)@, P )  = (ab"m(a,  P ) ,  a@). (3.4) 

In the following we shall write A", A", 9" and 9" for brevity if we mean A'"''', A'"'"', 
9 (a*) and 9('*") respectively (see equations (2.3) and (2.6)). Let (T be a factor system of 
G with respect to Go. We may choose (T from its equivalence class in such a way that 

a(@, a), (b, P ) )  = ?(a, b")y(ab", m(a ,  P))vab(a, P ) P " b ,  b )  (3.5) 

where y is the restriction of (T to H x H and v and P are mappings from, respectively, 
K X K and K x H  to U(1) given by v(a, p )  = cT((e, a), (e, p ) )  and P(a, b )  = (T((e, a), 
(b, E ) )  (van den Broek 1976). 

This decomposition for (T holds if and only if (T((u, E ) ,  (e, p ) )  = 1 for all a E Hand  all 
p E K. 

It will be supposed that U is of finite order and that the irreducible PUA representa- 
tions of H with respect to HO with factor system y are known. 

Let 9 be an irreducible PUA representation of H with factor system y. For each 
a E K the irreducible PUA representation 9" of H is defined by 

gm(a") = 9 " ( a ) d ( a " ,  €1, (e,  a))u*((e, a), (a, €1) (3.6) 

9,(a") = 9"(U)P*(cy, a)  (3.7) 

which can be put in the form 

using equation (3.5). 
% also belongs to the factor system y. The set {%(a E K }  is called the orbit of 9. 

The elements a E K for which 9 and 9" are equivalent form a subgroup KO of K. The 
little group L of 9 is defined by 

(3.8) 
L is a subgroup of G which contains H but is not necessarily an invariant subgroup. An 
irreducible PUA representation D of L with factor system u.JL x L is called allowable 

L = {(a,  a)la EH, a E KO}. 
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if D J H  = n 9  for some integer n, i.e. if the irreducible components of the restriction of 
D to H are all equal to '3. Now we shall define the induced PUA representation DTG of 
the allowable PUA representation D of L. 

Let g l  = e ,  g 2 , .  , . , g,  be left coset representatives of G with respect to L. Then 

Let E be the representation space of D, let Xi = %? for i = 1, . . , , p and let Ki be a 
fixed mapping from %e' to Xi which is unitary if gi E GO and anti-unitary if g i g  GO. The 
representation space of DTG then is X = Y,;=' @Xi  and (DTG)(g) is given by its action 
on Yei::: 

G=);y=i g J .  

where j is such that g7lggi EL. 
Another way of defining DTG is in terms of matrices: 

The procedure of generalised induction now is as follows: 
(i) divide the irreducible PUA representations of H with factor system y into orbits 

and take from each orbit one element 9 ; 
(ii) determine the little group L of 9 ;  

(iii) find the allowable PUA representations of L ; 
(iv) induce these allowable PUA representations to G. 

In this way all irreducible finite-dimensional PUA representations with factor system 
U are obtained. 

Let us finally call attention to step (iii) in the induction procedure. We restrict 
ourselves to the case where H f Go. For any a E KO there exists a unitary operator U ( a )  
such that 

9 ( a )  = u(a)9a(a)V-1(a). (3.11) 

Define U(a, a) = 9((a)U(a)  for all (a ,  a) EL. Then U(a, a) is a PUA representation of 
L with a factor system w which may be shown to be of the form 

a), (b,  P I )  = r(a, b")y(ab", m(a ,  P))p(a,  P)P(., b).  (3.12) 

The factor system (U&!, x L))w* of L thus reduces to afactor system ( v / p ) ( a ,  p )  of KO. 
The irreducible allowable PUA representations of L with factor system c+&(L X L )  are 
now given by U(a, a) 0 E(a) ,  where E runs through the irreducible PUA representa- 
tions of KO with factor system vp*. So step (iii) of the generalised induction procedure 
in the case where H s G o  reduces to the computation of U(a) ,  p(a,@) and the 
irreducible PUA representations of KO with factor system v p * .  

4. The PUA representations of the Shubnikov space groups of type I and 111 

Let G be a Shubnikov space group of type I or 111, Hits  subgroup of translations and Go 
its non-magnetic subgroup. 

The Shubnikov point groups K and KO are defined by G/H and Go/H respectively. 
The identities of H and K will be denoted by e and E respectively. Elements of G will 
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be denoted by (t,  R )  where t E H and R E K.  We define (t,  R) by its action on 
space-time: 

(f7 R)(X; t )  (Rr + t tR ; E R f )  (4.1) 

where eR is defined by 

1 if R E &  
if R g K o  (4.2) 

and tR is a fixed non-primitive translation associated with R. The multiplication of 
elements of G is now given by 

(t,  R)(t’ ,  R’) = (t+Rt’+m(R, R’), RR’) (4.3) 

m(R,R’)=tR +RtR,-fRR’. (4.4) 

where the mapping m : K X K -+ H is given by 

Let t l ,  t2 and t3 be basic translations of H. Then each element t of H can be written as 
c = n l t l + n 2 t 2 + n 3 t 3 .  In the sequel we shall identify t with the column vector with 
entries n17 n2 and n3. Moreover each element R of K is given by the 3 X 3 matrix which 
represents R with respect to the basic vectors c1, t2 and t3,  which is also denoted by R. 

Let 5 be a factor system of G. From a previous paper (van den Broek 1977, to be 
referred to as I) it follows that we can choose U from its equivalence class in such a way 
that 

(4.5) cr((f, R), (t’, R‘)) = ~ ( t ,  Rt’)y(t+Rt’, m(R, R’))v(R, R’)P(R, t’) 

where 

y( t7  t’) = exp[-2ni(tTAt’)]. (4.6) 
Here A is a real antisymmetric 3 X 3 matrix 

0 U3 -U2 

A =  -a3 1, a2 - ~ 9  
and tT denotes the transpose of t. 

integer elements and a column vector k(R) such that 
Furthermore for each R E K there exists a symmetric 3 x 3 matrix BR with half- 

E ~ R - ~ ~ A R - ~  - A  = BR (mod 1) (4.7) 

P(R, t )  = exp(7ritTRTBRRt) exp(-27rik(R). Rt). (4.8) 

and 

So the factor system (+ is given by the matrix A,  the vectors k(R), the matrices B R  and 
the mapping v :  K X K -  U(1). These quantities are obtained if one determines the 
factor systems of G as is done in I and are supposed to be known in the sequel. 

At this point we should note that we can take advantage of the fact that we are still 
able to choose the basic translations in a convenient way. For, since the column vectors 
f and the matrices R depend on the choice of the basic translations, also the quantities 
that determine the factor 5 depend on this choice. Suppose we take another set of basic 
translations u17 u2 and u3. Then a translation represented by t with respect to the old set 
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of basic translations will be represented by t' = St with respect to the new set where S is 
an integer matrix with det S = *l. The matrices R are transformed into R' = SRS-'. 
From equation (4.6) it follows that the matrix which determines y now becomes 
A' = S-lrAS-'. From the equations (4.7) and (4.8)it follows that BR and k(R)change 
into S-'TBRS-' and S-lTk(R) respectively. Since A is antisymmetric, A' is also 
antisymmetric and can be written as 

0 a; -a; 
A ' =  jnj 0 ,  UJ. 

a2 -a1 

We will show that the basic translations, and thus the matrix S,  can be chosen in such a 
way that a;  = a; = 0. Let the vectors a and a' be given by (al ,  a2, as) and ( U ; ,  a;,  a i )  
respectively. Then from A' = S-lTAS-' it follows a' = (det S)Sa. 

Since y is a factor system of finite order it follows that the entries of a and U '  are 
rational. Therefore we can find a vector U which is a multiple of a and has integer 
entries which are relatively prime. Now we choose as new basic translation u3 the 
translation which is represented by U with respect to tl,  t2 and t3; u1 and uz are chosen 
arbitrarily. Now Su = (0, 0, 1) and since a' is a multiple of Su it follows a ;  = a; = 0. 
Therefore in the sequel we may assume that the basic vectors are chosen in such a way 
that al  = a2 = 0. The factor system y of H is then given by a3 which is a rational 
number, so we can write a 3 = m / 2 N  where m and N are integers with no common 
factor. 

The PU representations of H with factor system y may be determined with the 
generalised induction procedure, starting from a subgroup of H where y is trivial, 
analogous to the derivation by Opechowski and Tam (1969) of the unitary vector 
representations of their invariance translation operator group. However, from the 
results of Opechowski and Tam the PU representations of H with factor system y may 
be read off immediately; they are all N dimensional and labelled by a vector k, the three 
components of which run through the interval [0, 1). Their matrix elements are given 
by 

k2 m 
N N + k3t3  +-( j  - i) - - f l ( i f2  + j ) ) ]  

if - is integer 
N 

[Dk ( t ) ] i j  = (4.9) 

[O otherwise. 

The character ,yk(t)= EL1 [D'(t)]ii is given by 

m t l  t 2  

N N  2N )] if both - and - are integer k2 1 N exp [ 2 4  2 tl  +zt2 + k3t3  - - f l t 2  

(4.10) X k ( t )  = 

0 otherwise. 
So the characters are different from zero only on the subgroup HI of H of index N 2  
given by 

HI = { t E H ( t l =  n lN;  t z  = n2N; n l ,  n2 integer}. (4.11) 
According to equation (3.6) we define for each R E K 

D&) = [D'(R-'t)lRP*(R, R-l t ) .  (4.12) 
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The character &(t) of D i ( t )  is given by 

& ( f )  = hk(R- ' t ) ]RP*(R ,  R- ' t ) .  (4.13) 

0: and Dk are equivalent if and only if x i  = x k ,  or 

x'(t)P(R, R - l t )  = l yk(R- ' t ) lR V t  E H .  (4.14) 

Now H I  is invariant under the matrices R of K.  This can be seen as follows: from 
equation (4.7) we have 

ER (det R)Ra = U (mod i) (4.15) 

if a is the vector with entries a', a2 and a3. Withal = u2 = 0 and a3 = m/2Nit follows 

R 0 = 0 (modN). (9 (3 (4.16) 

belongs to H I  and thus R also belongs to H1. This means that 

we only need to consider equation (4.14) for t € H I .  Let the matrix Q be defined by 

Q = O N O  (: ," (4.17) 

then the elements of HI  can be written as Qt where t E H. The equations (4.14) and 
(4.10) now become respectively 

x'(RQf)P(R, a t ) =  [ x k ( Q f ) l R  V t  E H (4.18) 
and 

xk(Qf)=Nexp[2.rri(k. t-&"lt2)]. (4.19) 
Substituting the equations (4.19) and (4.8) in equation (4.18) gives 

ERk t + k ( R  ) . RQf - k . Q-'RQt 

= ~ E R ~ N ~ ~ ~ ~ + ~ ~ * Q R ~ B ~ R Q C  -tmN(Q-'RQt)l(Q-1RQf)2 (mod 1) 

(4.20) 
Let us denote the right-hand side of this equation by f(t), then 

f ( t  +t')-f(t) -f(t') = h m N t T C t r  +fTQRTBRRQtf-tmNtTQRTQ-lCQ-lRQt' 

where 
(4.21) 

This can be written as 

f ( t ' f ' ) - f ( f ) - f ( f ' )  = fTDtf  (4.22) 
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where the matrix D is given, if we use equation (4.7), by 

D = $ERmNC-4mNQRTQ-'CQ-'RK + ERQAQ - QRTARQ (mod 1) (4.23) 

or 

D =ER(tmNC+QAQ)-QRTQ-'($mNC+QAQ)Q-'RQ (mod 1). (4.24) 

(4.25) 

So the matrix D has only integer entries. This means thatf(t  + t') - f ( t )  - f ( t ' )  is integer 
and therefore we may write 

f ( t )  = Z(R) . c (mod 1). (4.26) 

From the definition of f ( t )  it follows that we can choose Z(R) by 

[I(R)]i = ;[QRTBRRQ]ii -~mN(Q-'RQ)i j (Q-lRQ)zi  

(4.27) 

Equation (4.20) now becomes 

e R k .  t + k ( R )  .RQt  - k .  Q-'RQt = I ( R ) .  t (mod 1). (4.28) 

and we finally obtain 

ER~+QR~~(R)-QR~Q-'~-Z(R)=O (mod 1). (4.29) 

So 0" and D i  are equivalent if and only if equation (4.29) holds. This gives us the orbit 
and the little group of Dk, and therefore the finite-dimensional PUA representations of 
G are obtained with the generalised induction procedure. 

5. The PUA representations of the Shubnikov space groups of type I1 

Let G be a Shubnikov space group of type I1 and G its unitary subgroup which is a type I 
Shubnikov space group. The notation of the elements of G will be as in the previous 
section. Elements of G will be denoted by ( t ,  R ,  a )  where (t ,  R )  E G, a E Cz = {e, T}  and 
T denotes the time-reversal operator. 

We define (t,  R ,  a )  by (t ,  R ,  e )  = (t,  R )  and (t ,  R ,  T)  = ( t ,  R ) T .  
Let w be a factor system of G. From I it follows that w may be chosen from its 

(5.1) 

where a is a factor system of G with the properties described in the previous section and 
N and M are mappings from, respectively, C, X CZ and Cz x G into U(1) with the 
properties 

equivalence class in such a way that 

w ( ( l ,  R,  a ) ,  ( f ' ,  R' ,  a ' ) > = d ( t ,  RI, ( f ' ,  R'))N(a, a ' )M(a,  (t ' ,  R' ) )  

N ( e , e ) = N k  T ) = N ( T , e ) = M ( T , ( e , E ) ) = l  (5.2) 
W e ,  0, RI) = 1 V(t ,  R )  E G (5.3) 
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and 

M(T,  0, RI@', R '1) 
= M ( T ,  (t ,  R))M(T,  (t',  ~ ' ) ) a ~ ( ( t ,  R ) ,  (t',  R')) V(f ,  R ) ,  ( f ' ,  R') E G. 

(5.4) 

Since H is an invariant subgroup of G and w ( ( f , E , e ) , ( e ,  R,a ) )=  1 we may also 
decompose w as follows 

w ( ( t ,  R, a ) ,  (t ' ,  R',  a ' ) )  
= y ( t ,  t '(R,a))y(t+ t'(R*"), u( (R,  a ) ,  (R ' ,  a ' ) ) ) p ( ( ~ ,  a ) ,  (R' ,  ~ ' ) ) P ' ( ( R ,  a ) ,  t ')  

(5.5) 
where (R,  a )  stands for the coset with representative (e, R, a ) .  Here t(R,a) equals Rt and 
u((R,  cy), (R' ,  a ' ) )  is equal to m(R,  R'). From the equations (5.1), (5.2) and (4.5) we 
obtain 

", a ) ,  t )  = m, t )M(a ,  @, E)) .  (5.6) 
Now for each irreducible PU representation D' of H with factor system y we define 
D:R,ar) by 

D:R,rr)(t) = [D'(t)l"P*(R, t )M*(a,  (t,  E)) .  (5.7) 
Reasoning along the same lines as in the previous section it follows that D k  and D&,a) 
are equivalent if and only if 

x'(RQt)P(R, Qf )M(a ,  (Qt, E ) )  = kk(Qt)l". 

M(T,  t + t') = M(T,  ~ ) M ( T ,  t ' )y2(r ,  t').  

(5.8) 

(5.9) 

From the equations (5.4) and (4.5) it follows 

So y 2  is a trivial factor system of H, and therefore u3 = 0 or a, so m/N = 0 or $. Since now 

y2(r, t ' )=exp i ;  27ri-(tlf;-f2t;) 1 =exp G 2 7 r i - [ f l f 2 + r ~ f ~ - ( f l + f ~ ) ( f z + r ~ ) ] )  (5.10) 

we can write M ( T ,  t )  as 

M(T,  t )  = exp 277i-f1t2 exp(2vik(T). t )  (5.11) 

for some vector k(T) which is determined by the factor system w. Substituting the 
equations (4.19), (4.8) and (5.11) in equation (5.8) gives 

~ ( a ) k .  t - k  . Q-'RQt +k(R) . RQt - k ( a )  . Qt 

(3 

= b" f2  + itTQR =l3 RRQt - &mN( Q-'RQt) (Q - ' (mod 1). (5.12) 

Here € ( a )  is given by € ( e )  = 1 and ~(7') = -1; k ( a )  is given by k ( T )  and the zero vector 
k ( e ) .  Just as in the previous section the right-hand side of equation (5.12) is equal to 
I @ ) .  t(mod 1) where Z(R) is given by equation (4.27). We finally obtain 

~ ( a ) k  -QRTQ-'k +QRTk(R) -Qk(a ) -Z(R)  = 0 (mod 1) (5.13) 

as the equation which determines the orbit and the little group of D'. 
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6. The PUA representations of the Shubnikov space groups of type IV 

Let G be a Shubnikov space group of type IV, G its unitary subgroup, which is a type I 
Shubnikov space group, and let H be the black and white lattice of G. H i s  given by H, 
which is again the subgroup of translations of G, and an extra translation to, with 
2ro€H,  which occurs in G in combination with the time-reversal operator. The 
notation of the elements of G will be as in the preceding sections. Elements of G will be 
denoted by (t ,  R, a) where (t,  R) E G and a E Cz = {e,  a }  with a 2  = e.  We define (I, R ,  a) 
by ( t ,  R, e )  = ( r ,  R )  and ( r ,  R, a )  = ( t  +Rto, R)Twhere ( t+Rto ,  R )  actsonspacevectors 
in the usual way and T denotes again the time-reversal operator. 

Let w be a factor system of G. From I it follows that w may be chosen from its 
equivalence class in such a way that 

4 ( t ,  R, a), 0 ' 9  R' ,  a'>> 

= a((f, R), ( f ' ,  R')")u((t, R)(t' ,  R')", n(a, a'))N(a, a ' )M(a,  ( r ' ,  R')) (6.1) 
where U is a factor system of G with the properties described in § 4, (t, R)" is given by 
( t ,R)" =( t ,R)and( t ,R)"  =(t+to-Rto ,R) ,andn(a ,a ' ) i sg ivenbyn(e ,e )=n(e ,a)=  
n ( a ,  e )  = (e,  E )  and n(u, a )  = (2t0, E ) .  Furthermore the mappings N and M from 
C2 X Cz and Cz x G respectively into U(1) have the following properties: 

N(e,  e )  = N(e,  a )  = N(a,  e )  = M(a,  (e,  E ) )  = 1 

P(e ,  (I, R)) = 1 V(t ,  R )  E G 
and 

M(a,  ( t ,  W t ' ,  R')) = W a ,  (t ,  R) )M(a,  (t',  R'))c+((t, R)", (t ' ,  R')"b((r ,  RI, (t',  I?')). 
(6.4) 

Just as in the previous section we obtain equation ( 5 . 3 ,  the only difference being that 
here U is given by 

U ( ( R ,  a), (R', a'))= m(R, R')+S(a)R[to-€(a')R'to].  

Here 6 and E are given by S ( e )  = 0, S(a)  = 1, € ( e )  = 1 and E ( T )  = -1. Also equation 
(5.6) is valid here which means that again is given by equation (5.7). From the 
equations (6.4) and (4.5) it follows 

(6.5) 
So the situation is completely analogous to the situation in the previous section; we can 
write 

M(a,  t + t') = M ( a ,  t )M(a,  t ' )y2(t ,  t').  

M(a,  r )  = exp 2d-11tz exp(2dk(a) .  t )  (3 
and the final result is that Dk and D&") are equivalent if and only if 

E (a )k - QR =Q-'k + OR Tk ( R  ) - Qk (a) - I(R ) = 0 (mod 1). (6.7) 
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